Dimension-independent likelihood-informed MCMC
نویسندگان
چکیده
Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters that, in principle, can be described as functions. This work introduces a family of Markov chain Monte Carlo (MCMC) samplers that can adapt to the particular structure of a posterior distribution over functions. Two distinct lines of research intersect in the methods developed here. First, we introduce a general class of operator-weighted proposal distributions that are well defined on function space, such that the performance of the resulting MCMC samplers is independent of the discretization of the function. Second, by exploiting local Hessian information and any associated lowdimensional structure in the change from prior to posterior distributions, we develop an inhomogeneous discretization scheme for the Langevin stochastic differential equation that yields operator-weighted proposals adapted to the non-Gaussian structure of the posterior. The resulting dimension-independent and likelihood-informed (DILI) MCMC samplers may be useful for a large class of high-dimensional problems where the target probability measure has a density with respect to a Gaussian reference measure. Two nonlinear inverse problems are used to demonstrate the efficiency of these DILI samplers: an elliptic PDE coefficient inverse problem and path reconstruction in a conditioned diffusion.
منابع مشابه
Lossless Bayesian inference in infinite dimension without discretisation or truncation: a case study on Lambda-coalescents
In this talk I will introduce the class of Lambda-coalescents, which are naturally parametrised by infinite dimensional probability measures. I will show that these measures can be consistently inferred from data without discretising or truncating the problem under verifiable conditions on the prior. The method resembles the so-called Likelihood Informed Subspaces approach to Bayesian inverse p...
متن کاملAccelerating Mcmc with Active Subspaces
The Markov chain Monte Carlo (MCMC) method is the computational workhorse for Bayesian inverse problems. However, MCMC struggles in high-dimensional parameter spaces, since its iterates must sequentially explore a high-dimensional space for accurate inference. This struggle is compounded in physical applications when the nonlinear forward model is computationally expensive. One approach to acce...
متن کاملGeometric MCMC for infinite-dimensional inverse problems
Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon meshrefinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and t...
متن کاملEfficient Human Body Configuration using MCMC
Body configuration based on the Silhouette. We propose an effective Model based MCMC (Markov Chain Monte Carlo) method under bayesian framework to solve the configuration problem, in which the best configuration could be defined as MAP (maximize a posteriori probability). This model based MCMC utilizes the human body model to drive the MCMC sampling from the solution space. It converses the ori...
متن کاملHuman Body Configuration using Bayesian Model
In this paper we present a novel approach for human Body configuration based on the Silhouette. We propose to address this problem under the Bayesian framework. We use an effective Model based MCMC (Markov Chain Monte Carlo) method to solve the configuration problem, in which the best configuration could be defined as MAP (maximize a posteriori probability) in Bayesian model. This model based M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 304 شماره
صفحات -
تاریخ انتشار 2016